SMART EDUCATIONS
1 SMART EDUCATIONS ( www.smarteducations.org )
POLYNOMIALS
1.
๐ผ๐‘“ ๐‘ฅ
51
+ 51 ๐‘–๐‘  ๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘’๐‘‘ ๐‘๐‘ฆ ( ๐‘ฅ + 1 ) ๐‘กโ„Ž๐‘’๐‘› ๐‘–๐‘ก๐‘  ๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ ๐‘–๐‘ 
a. 0 b. 1 c. 49 50. 50
2.
๐‘‡โ„Ž๐‘’ ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘œ๐‘“ ( 1 โˆ’ ๐‘ฅ
3
) ๐‘Ž๐‘Ÿ๐‘’
a. b. c.
( 1 + ๐‘ฅ )( 1 โˆ’ ๐‘ฅ + ๐‘ฅ
2
) ( 1 โˆ’ ๐‘ฅ )( 1 + ๐‘ฅ + ๐‘ฅ
2
) ( 1 + ๐‘ฅ )( 1 โˆ’ ๐‘ฅ
2
)
d.
( 1 + ๐‘ฅ )( 1 + ๐‘ฅ
2
)
3.
๐‘‡โ„Ž๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ 249
2
โˆ’ 248
2
๐‘–๐‘ 
a. b. 477 c. 487 d. 497
1
2
4. Abscissa of all the points on the y-axis is
a. 1 b. Any number c. 0 d. 2
5. Which of the following is a linear equation:
a.
๐‘ฅ
2
+ 2 ๐‘ฅ = 2 ๐‘ฅ
2
โˆ’ 3 ๐‘ฅ + 7
b.
( ๐‘ฅ + 2 )( ๐‘ฅ + 3 )= ๐‘ฅ
2
+ 6 ๐‘ฅ โˆ’ 8
c.
7 ๐‘ฅ + 3 = 7 ๐‘ฅ โˆ’ 7
d. None of these
6.
๐‘ฅ โˆ’ ๐‘ฅ
3
๐‘–๐‘  ๐‘Ž ............................... ๐‘๐‘œ๐‘™๐‘ฆ๐‘›๐‘œ๐‘š๐‘–๐‘Ž๐‘™ .
a. Linear b. Quadratic c. Cubic d. None of the above
7. The coefficient of x in the expansion (x+3)
3
a. 1 b. 9 c. 18 d. 27
8.
๐ผ๐‘“ 3 ๐‘ฅ +
1
2
( )
3 ๐‘ฅ โˆ’
1
2
( )
= 9 ๐‘ฅ
2
โˆ’ ๐‘ ๐‘กโ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘ ๐‘–๐‘  :
a. 0 b. c. d.
โˆ’
1
4
1
4
1
2
9.
๐ผ๐‘“
๐‘Ž
๐‘
+
๐‘
๐‘Ž
=โˆ’ 1 ๐‘กโ„Ž๐‘’๐‘› ๐‘Ž
3
โˆ’ ๐‘
3
๐‘–๐‘ 
a. -3 b. -2 c. 1 d. 0
10. Zero of the polynomial p(x) = 2x+5 is
a. b. c. d.
โˆ’
5
3
โˆ’
5
2
5
6
1
2
11. then the value of k is
๐ผ๐‘“ ( ๐‘ฅ โˆ’ 2 ) ๐‘–๐‘  ๐‘Ž ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘œ๐‘“ ๐‘ ( ๐‘ฅ ) = ๐‘ฅ
3
โˆ’ 6 ๐‘ฅ + 2 ๐‘˜ ,
a. -2 b. 2 c. -6 d. -3
12.
๐ผ๐‘“ ๐‘ ( ๐‘ฅ ) = 3 ๐‘ฅ โˆ’ 4 ๐‘ฅ
2
+ 6 , ๐‘กโ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘ (โˆ’ 1 ) ๐‘–๐‘ 
a. 2 b. 0 c. -1 d. 1
13. is a polynomial of degree
2
a. a. 2 b) 0 c) 1 d)
1
2
14. If p (x) = x+3 , then p (x) + p (-x) is equal to
a. 3 b. 0 c. 2x d. 6
15. The coefficient of x in the expansion of (x+3)
3
is
a. 1 b. 9 c. 18 d. 27
16. Degree of the polynomial 4x
4
+ 0x
3
+ 0x
5
+ 5x + 7 is
SMART EDUCATIONS
2 SMART EDUCATIONS ( www.smarteducations.org )
a. 4 b. 5 c. 3 d. 7
17. The remainder when x
4
+8x+5 is divided by x+4 is
a. 229 b. 134 c. -229 d. -234
18. The zero of the polynomial f(x) = 2x+7 is?
a. b. c. d.
7
2
โˆ’ 7
2
2
7
โˆ’ 2
7
19. The value of k, if (x-1) is a factor of 4x
3
+3x
2
-4x +k, is
a. 1 b. 2 c. -3 d. 3
20. is a polynomial of degree.
3
a. b. 0 c. 2 d. 1
1
2
21. Degree of zero polynomial is
a. 0 b. 1 c. any real number d. Not defined
22. The zeroes of the polynomial p(x) = x
2
-3x are
a. 0,0 b. 0,3 c. 0,-3 d. 3,-3
23. The polynomial of the type ax
2
+bx+c, a=0 is called
a. Linear polynomial b. Quadratic polynomial c. Cubic polynomial
d. Biquadratic polynomial
24. If x
2
+kx+6 =(x+2)(x+3) for all x, then the value of k is :
a. 1 b. -1 c. 5 d. 3
25.
๐‘‰๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ( 256 )
0 . 16
ร—( 256 )
0 . 09
=
a. 4 b. 16 c. 64 d. 256.25
26. The value of 249
2
- 248
2
is
a. 1 b. 487 c. 477 d. 497
27.
2 ๐‘–๐‘  ๐‘Ž ๐‘๐‘œ๐‘™๐‘ฆ๐‘›๐‘œ๐‘š๐‘–๐‘Ž๐‘™ ๐‘œ๐‘“ ๐‘‘๐‘’๐‘”๐‘Ÿ๐‘’๐‘’
a. 2 b. 0 c. 1 d. 3
28. One of the linear factors of is
3 ๐‘ฅ
2
+ 8 ๐‘ฅ + 5
a. x+1 b. x-2 c. x+2 d. x-4
29. For what value of k, (x+1) is a factor of
๐‘ ( ๐‘ฅ )= ๐‘˜ ๐‘ฅ
2
โˆ’ ๐‘ฅ + 4 ?
30.
๐น๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ๐‘–๐‘ ๐‘’ : 2 ๐‘ฅ
5
+ 432 ๐‘ฅ
2
๐‘ฆ
3
.
31.
๐น๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ๐‘–๐‘ ๐‘’ : 125 ๐‘ฅ
3
โˆ’ 343 ๐‘ฆ
3
.
32.
๐ผ๐‘“ ๐‘ฅ
3
+ ๐‘Ž ๐‘ฅ
2
+ ๐‘๐‘ฅ + 6
( )
โ„Ž๐‘Ž๐‘  ( ๐‘ฅ โˆ’ 2 ) ๐‘Ž๐‘  ๐‘Ž ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘Ž๐‘›๐‘‘ ๐‘™๐‘’๐‘Ž๐‘ฃ๐‘’๐‘  ๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ 3 ๐‘คโ„Ž๐‘’๐‘› ๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘’๐‘‘
by (x-3), find the values of a and b.
33. Find the value of the polynomial .
๐‘ ( ๐‘ฅ )= ๐‘ฅ
3
โˆ’ 3 ๐‘ฅ
2
โˆ’ 2 ๐‘ฅ + 6 ๐‘Ž๐‘ก ๐‘ฅ = 2
34.
๐ผ๐‘“ ( 3 ๐‘ฅ โˆ’ 15 )
0
๐‘Ž๐‘›๐‘‘ ๐‘ฅ + 5 ( )
0
๐‘Ž๐‘Ÿ๐‘’ ๐‘๐‘œ๐‘š๐‘๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘Ž๐‘Ÿ๐‘ฆ ๐‘Ž๐‘›๐‘”๐‘™๐‘’๐‘  , ๐‘“๐‘–๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘›๐‘”๐‘™๐‘’๐‘ 
35.
๐ธ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘Ž๐‘ก๐‘’ 99 ร— 101 ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘ ๐‘ข๐‘–๐‘ก๐‘Ž๐‘๐‘™๐‘’ ๐‘–๐‘‘๐‘’๐‘›๐‘ก๐‘–๐‘ก๐‘ฆ .
36.
๐น๐‘–๐‘›๐‘‘ ' ๐‘ฅ ' , ๐‘–๐‘“ 2
๐‘ฅ โˆ’ 7
ร— 5
๐‘ฅ โˆ’ 4
= 1250 .
37. Find the perimeter of the rectangle whose area is .
๐‘ฅ
2
โˆ’ 5 ๐‘ฅ + 6
38.
๐ผ๐‘“ ๐‘ฅ
๐‘Ž
= ๐‘ฆ , ๐‘ฆ
๐‘
= ๐‘ง ๐‘Ž๐‘›๐‘‘ ๐‘ง
๐‘
= ๐‘ฅ , ๐‘กโ„Ž๐‘’๐‘› ๐‘๐‘Ÿ๐‘œ๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘Ž๐‘๐‘ = 1
39.
๐น๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ๐‘–๐‘ ๐‘’ : 4 ๐‘ฅ
2
+ 9 ๐‘ฆ
2
+ 16 ๐‘ง
2
+ 12 ๐‘ฅ๐‘ฆ โˆ’ 24 ๐‘ฆ๐‘ง โˆ’ 16 ๐‘ฅ๐‘ง .
SMART EDUCATIONS
3 SMART EDUCATIONS ( www.smarteducations.org )
40.
๐น๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ๐‘–๐‘ ๐‘’ : ๐‘ฅ
4
+
1
๐‘ฅ
4
+ 1
41.
๐‘ƒ๐‘Ÿ๐‘œ๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ฅ
3
+ ๐‘ฆ
3
+ ๐‘ง
3
โˆ’ 3 ๐‘ฅ๐‘ฆ๐‘ง = ๐‘ฅ + ๐‘ฆ + ๐‘ง ( ) ๐‘ฅ
2
+ ๐‘ฆ
2
+ ๐‘ง
2
โˆ’ ๐‘ฅ๐‘ฆ โˆ’ ๐‘ฆ๐‘ง โˆ’ ๐‘ฅ๐‘ง
( )
42. ๐น๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ๐‘–๐‘ ๐‘’ : ๐‘ฅ
3
โˆ’ 3 ๐‘ฅ
2
โˆ’ 9 ๐‘ฅ โˆ’ 5
43. Find the value of a for which (x-a) is a factor of
๐‘ฅ
3
โˆ’ ๐‘Ž ๐‘ฅ
2
+ 2 ๐‘ฅ + ๐‘Ž โˆ’ 1
44. Evaluate
97 ร— 102 ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘ ๐‘ข๐‘–๐‘ก๐‘Ž๐‘๐‘™๐‘’ ๐‘–๐‘‘๐‘’๐‘›๐‘ก๐‘–๐‘ก๐‘ฆ .
45. Find the area of the triangle, two sides of which are 8cm and 11cm and the perimeter is
32 cm.
46. ๐‘‰๐‘’๐‘Ÿ๐‘–๐‘“๐‘ฆ ๐‘ฅ
3
+ ๐‘ฆ
3
=( ๐‘ฅ + ๐‘ฆ )( ๐‘ฅ
2
+ ๐‘ฆ
2
โˆ’ ๐‘ฅ๐‘ฆ )
47.
๐ผ๐‘“ ๐‘Ž + ๐‘ + ๐‘ = 0 , ๐‘ โ„Ž๐‘œ๐‘ค ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘Ž
3
+ ๐‘
3
+ ๐‘
3
= 3 ๐‘Ž๐‘๐‘
48.
๐น๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ๐‘–๐‘ ๐‘’ : โˆ’ ( ๐‘– ) 3 ๐‘ฅ
2
โˆ’ ๐‘ฅ โˆ’ 4 ( ๐‘–๐‘– ) 2 ๐‘ฅ
2
+ 7 ๐‘ฅ + 3
49. Factorise using appropriate identity:
๐‘ฆ
2
โˆ’
๐‘ฆ
2
100
50. Without calculating the cubs, find the value of: (28)
3
+ (-15)
3
+ (-13)
3
.
51. Find the remainder if x
15
+ 51 is divided by X+1.
52. If p(x) =x- 4x + 3, then evaluate p (2) โ€“ p (-1) + p (ยฝ).
53. Factorise: x
3
-3x
3
-9x โ€“ 5.
54. If p
2
+ 4q
2
+ 9r
2
= 2pq+6qr+3pr, then prove that p
3
+8q
3
+27r
3
=18pqr.
55. Find the product with the suitable identity:-
๐‘ฅ +
1
๐‘ฅ
( )
๐‘ฅ โˆ’
1
๐‘ฅ
( )
๐‘ฅ
2
+
1
๐‘ฅ
2
( )
๐‘ฅ
4
+
1
๐‘ฅ
4
( )
56. Compute the value of 9x
2
+4y
2
if xy = 6 and 3x+2y=12.
57. Factorise:-
a. x
2
-1-2a-a
2
b. .
๐‘ฅ
2
+
1
๐‘ฅ
2
+ 2 โˆ’ 2 ๐‘ฅ โˆ’
2
๐‘ฅ
c. Check whether (7+3x) is a factor of (3x
3
+7x).
d. , then evaluate
๐‘ฅ โˆ’
1
๐‘ฅ
( )
= 4
i.
๐‘ฅ
2
+
1
๐‘ฅ
2
( )
ii.
๐‘ฅ
4
+
1
๐‘ฅ
4
( )
58. 2x
3
+4x
2
-7ax-5 and 2x
3
+ax
2
-6x+3 are polynomials which on dividing by (x+1) and (x-1)
leaves remainders y and z respectively, if y-3z=16, then find a.
59. Give the geometric representations of 2x+9=0 as an equation
a. In one variable
b. In two variables
60. Find the remainder when x
4
+x
3
-2x
2
+x+1 is divided by x-1.
61. Find the value of k, if x-1 is a factor of 4x
3
+3x
2
-4x+k.
62. Factorise:- 6x
2
+17x+5
63. If x+y+z=0, show that x
3
+y
3
+z
3
=3xyz.
64. Factorise : 2y
3
+y
2
-2y -1
65. Find the value of the polynomial 5x-4x
2
+3 at x=2.
SMART EDUCATIONS
4 SMART EDUCATIONS ( www.smarteducations.org )
66. GIve possible expression for the length and breadth of the following rectangle if its area
is 35y
2
+13y-12.
67. Factorise: 8x
3
+27y
3
+36x
2
y+54xy
2
68. If a
2
+ b
2
and c
2
= 40 and ab+bc+ac=12, find the value of a
3
+b
3
+c
3
-3abc.
69. If
๐‘ฅ
2
+
1
๐‘ฅ
2
= 11 , ๐‘“๐‘–๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘ฅ
3
โˆ’
1
๐‘ฅ
3
70. When the polynomial 4x
3
+3x
2
-12ax-5 is divided by x-1, the remainder R
1
and when the
polynomial 2x
3
+ax
2
-6x+2 is divided by x+2, the remainder R
2
. If 3R
1
+R
2
+28 = 0, find the
value of a.
71. Find the value of x
3
+ y
3
+ z
3
-3xyz if x
2
+ y
2
+z
2
= 83 and x+y+z=15
72. Assertion : is a quadratic polynomial.
๐‘ฆ
2
+ 4 ๐‘ฆ + 3
Reason: A degree of polynomial 2 is called quadratic polynomial.
a. Both assertion (A) and reason (R) are true and (R) is the correct explanation of
assertion (A).
b. Both assertion (A) and reason (R) are true and (R) is not the correct explanation
of assertion (A).
c. Assertion (A) is true but reason (R) is false.
d. Assertion (A) is false but reason (R) is true.
73. Assertion: The value of
102 ( )
2
= 1061208
Reason:
๐‘ฅ + ๐‘ฆ ( )
3
= ๐‘ฅ
3
+ ๐‘ฆ
3
+ 3 ๐‘ฅ๐‘ฆ ( ๐‘ฅ + ๐‘ฆ )
a. Both assertion (A) and reason (R) are true and (R) is the correct explanation of
assertion (A).
b. Both assertion (A) and reason (R) are true and (R) is not the correct explanation
of assertion (A).
c. Assertion (A) is true but reason (R) is false.
d. Assertion (A) is false but reason (R) is true.
74. Assertion:
2 ๐‘ฅ
2
โˆ’ ๐‘ฆ
2
+ ๐‘ง
2
โˆ’ 2 2 ๐‘ฅ๐‘ฆ โˆ’ 2 ๐‘ฆ๐‘ง + 2 2 ๐‘ง๐‘ฅ = 2 ๐‘ฅ โˆ’ ๐‘ฆ + ๐‘ง
( )
2
Reason: ๐‘Ž
2
+ ๐‘
2
+ ๐‘
2
+ 2 ( ๐‘Ž๐‘ + ๐‘๐‘ + ๐‘Ž๐‘ )= ๐‘Ž + ๐‘ + ๐‘ ( )
2
a. Both assertion (A) and reason (R) are true and (R) is the correct explanation of
assertion (A).
b. Both assertion (A) and reason (R) are true and (R) is not the correct explanation
of assertion (A).
c. Assertion (A) is true but reason (R) is false.
d. Assertion (A) is false but reason (R) is true.
75. David, a student of class IX visited a book shop of his school to purchase the maths lab
kit. Mr Roy, who is running the bookshop in school told David that Maths lab kit consists
of a lab manual and a notebook and the total cost of lab kit is . He also told ๐‘ฅ
2
+ 6 ๐‘ฅ + 9
David that the total price of the kit includes the individual price of Manual and Notebook.
On the basis of above information answer the following question?
a. The price of kit is given by . What is the degree of the equation?
๐‘ฅ
2
+ 6 ๐‘ฅ + 9
b. is which type of polynomial.
๐‘ฅ
2
+ 6 ๐‘ฅ + 9
c. Find zero of polynomial .
๐‘ฅ
2
+ 6 ๐‘ฅ + 9
SMART EDUCATIONS
5 SMART EDUCATIONS ( www.smarteducations.org )
76. One day, the principal of a particular school visited the classroom. Class teacher was
teaching the concept of polynomials to students. He was very much impressed by her
way of teaching. To check whether the students also understand the concept taught by
her or not, he asked various questions to students. Some of them are given below.
Answer them.
a. Which one of the following is not a polynomial?
i. 4x
2
+2x-1
ii.
๐‘ฆ +
1
๐‘ฆ
iii. x
3
-1
iv. y
2
+5y+1
77. Ankur and Ranjan start a new business together. The amount invested by both partners
together is given by the polynomial , which is the product of their
๐‘ ( ๐‘ฅ )= 4 ๐‘ฅ
2
+ 12 ๐‘ฅ + 5
individual shares.
a. Coefficient of in the given polynomial is?
๐‘ฅ
2
b. Total amount invested by both, if x= 1000 is?
c. The shares of Ankur and Rajan invested individually are
d. What is the name given to the polynomial which represents the amount that each
of them has invested?
78. A school organised a mathematics exhibition in the school premises. A student made
two hangings related to polynomials which are shown in the figure,
Based on the given information given in the hanging, answer the following :
a. Find the value of p(5).
b. What are the factors of f(x)
c. Factorise: 9y
2
-9y +2
d. Find the length and breadth of the first hanging.