
AREAS RELATED TO CIRCLES 155
Now with this knowledge, let us try to find some
relations (or formulae) to calculate their areas.
Let OAPB be a sector of a circle with centre
O and radius r (see Fig. 11.3). Let the degree
measure of Ð AOB be q .
You know that area of a circle (in fact of a
circular region or disc) is pr
2
.
In a way, we can consider this circular region to
be a sector forming an angle of 360° (i.e., of degree
measure 360) at the centre O. Now by applying the
Unitary Method, we can arrive at the area of the
sector OAPB as follows:
When degree measure of the angle at the centre is 360, area of the
sector = pr
2
So, when the degree measure of the angle at the centre is 1, area of the
sector =
Therefore, when the degree measure of the angle at the centre is q, area of the
sector =
=
.
Thus, we obtain the following relation (or formula) for area of a sector of a
circle:
Area of the sector of angle
qq
qq
q =
,
where r is the radius of the circle and q the angle of the sector in degrees.
Now, a natural question arises : Can we find
the length of the arc APB corresponding to this
sector? Yes. Again, by applying the Unitary
Method and taking the whole length of the circle
(of angle 360°) as 2pr, we can obtain the required
length of the arc APB as
.
So, length of an arc of a sector of angle
qq
qq
q =
.
Fig. 11.3
Fig. 11.4