
SCIENCE16
A solution has a solvent and a solute as its
components. The component of the solution
that dissolves the other component in it
(usually the component present in larger
amount) is called the solvent. The component
of the solution that is dissolved in the solvent
(usually present in lesser quantity) is called
the solute.
Examples:
(i) A solution of sugar in water is a solid
in liquid solution. In this solution,
sugar is the solute and water is
the solvent.
(ii) A solution of iodine in alcohol known
as ‘tincture of iodine’, has iodine (solid)
as the solute and alcohol (liquid) as the
solvent.
(iii) Aerated drinks like soda water, etc., are
gas in liquid solutions. These contain
carbon dioxide (gas) as solute and water
(liquid) as solvent.
(iv) Air is a mixture of gas in gas. Air is a
homogeneous mixture of a number of
gases. Its two main constituents are:
oxygen (21%) and nitrogen (78%). The
other gases are present in very
small quantities.
Properties of a Solution
• A solution is a homogeneous mixture.
• The particles of a solution are smaller
than 1 nm (10
-9
metre) in diameter. So,
they cannot be seen by naked eyes.
• Because of very small particle size, they
do not scatter a beam of light passing
through the solution. So, the path of
light is not visible in a solution.
• The solute particles cannot be separated
from the mixture by the process of
filtration. The solute particles do not
settle down when left undisturbed, that
is, a solution is stable.
2.2.1 CONCENTRATION OF A SOLUTION
In activity 2.2, we observed that groups A and
B obtained different shades of solutions. So,
we understand that in a solution the relative
proportion of the solute and solvent can be
varied. Depending upon the amount of solute
present in a solution, it can be called dilute,
concentrated or saturated solution. Dilute
and concentrated are comparative terms. In
activity 2.2, the solution obtained by group
A is dilute as compared to that obtained by
group B.
Activity ______________ 2.3
• Take approximately 50 mL of water
each in two separate beakers.
• Add salt in one beaker and sugar or
barium chloride in the second beaker
with continuous stirring.
• When no more solute can be dissolved,
heat the contents of the beaker to raise
the temperature by about 5
o
C.°
• Start adding the solute again.
Is the amount of salt and sugar or barium
chloride, that can be dissolved in water at a
given temperature, the same?
At any particular temperature, a solution
that has dissolved as much solute as it is
capable of dissolving, is said to be a saturated
solution. In other words, when no more solute
can be dissolved in a solution at a given
temperature, it is called a saturated solution.
The amount of the solute present in the
saturated solution at this temperature is called
its solubility.
If the amount of solute contained in a
solution is less than the saturation level, it is
called an unsaturated solution.
What would happen if you were to take a
saturated solution at a certain temperature
and cool it slowly.
We can infer fr
om the above activity that
different substances in a given solvent have
different solubilities at the same temperature.
The concentration of a solution is the amount
(mass or volume) of solute present in a given
amount (mass or volume) of solution.
There are various ways of expressing the
concentration of a solution, but here we will
learn only three methods.
(i) Mass by mass percentage of a solution